Solve. Explain why your answer is reasonable.

1. Zoe had a board $5 \frac{1}{4}$ feet long. She cut off a piece. Now the board is $3 \frac{5}{6}$ feet long. How long was the piece she cut off?

Answer:
Why is the answer reasonable?
\qquad
\qquad
2. A rectangle has a length of $10 \frac{3}{16}$ inches and a width of $6 \frac{7}{8}$ inches. What is the perimeter of the rectangle?

Answer: \qquad
Why is the answer reasonable?
\qquad
\qquad
3. Max is making trail mix. He combines $\frac{2}{5}$ pound of dried fruit and $\frac{1}{3}$ pound of mixed nuts. He adds sunflower seeds to make a total of 1 pound. What is the weight of the seeds?

Answer: \qquad
Why is the answer reasonable?
\qquad
\qquad
4. At the start of party, a bowl contains 16 pints of punch.

Guests drink $10 \frac{1}{4}$ pints. Then the host adds another $7 \frac{1}{2}$ pints to the bowl. How much punch is in the bowl now?

Answer: \qquad
Why is the answer reasonable?
\qquad
\qquad

Remembering

Tell whether the answer is reasonable or unreasonable. Explain how you decided.

1. $\frac{8}{9}+\frac{1}{10}=\frac{39}{90}$
2. $5 \frac{1}{6}-4 \frac{2}{7}=2 \frac{37}{42}$
3. $\frac{11}{12}-\frac{7}{8}=\frac{1}{24}$
4. $5 \frac{5}{6}+1 \frac{3}{4}=5 \frac{1}{12}$

Add or subtract.

5. $\frac{7}{8}+\frac{5}{8}=$ \qquad 6. $\frac{4}{7}+\frac{2}{3}=$
6. $\frac{7}{15}-\frac{3}{10}=$ \qquad
7. $\frac{3}{4}-\frac{5}{12}=$
8. $5 \frac{4}{5}-2 \frac{1}{3}=$ \qquad 10. $7 \frac{5}{6}+2 \frac{11}{12}=$
\qquad
\qquad
\qquad

Compare.

11. $\frac{5}{8} \bigcirc \frac{5}{9}$
12. $1 \frac{7}{12} \bigcirc 1 \frac{2}{3}$
13. $\frac{5}{9} \bigcirc \frac{3}{7}$
14. $\frac{1}{89} \bigcirc \frac{1}{90}$
15. $\frac{5}{18} \bigcirc \frac{2}{9}$
16. $\frac{65}{66} \bigcirc \frac{55}{56}$

Solve.
17. Stretch Your Thinking Find two mixed numbers such that when you estimate their sum by rounding to the nearest whole number you get a different estimate than when you round to the nearest half. Demonstrate that your numbers satisfy this condition.
\qquad
\qquad
\qquad
\qquad

