Homeworlk

Divide

1. $5 \div 6=$ \qquad 2. $9 \div \frac{1}{5}=$ \qquad
2. $33 \div 30=$ \qquad 4. $8 \div \frac{1}{6}=$ \qquad
3. $3 \div 10=$ \qquad 6. $4 \div \frac{1}{9}=$ \qquad
4. $100 \div \frac{1}{6}=$ \qquad 8. $1 \div 100=$ \qquad
5. $\frac{1}{5} \div 8=$ \qquad 10. $\frac{1}{8} \div 7=$ \qquad
6. $\frac{1}{2} \div 9=$ \qquad
Solve.
7. $\frac{1}{3} \div 5=$ \qquad
Show your work.
8. Alexander is dividing oranges into eighths. He has 5 oranges. How many eighths will he have?
9. Carrie has 32 ounces of ice cream to divide equally among 10 people. How much ice cream will each person get?
\qquad
10. Nayati wants to swim 50 miles this school year. She plans to swim $\frac{1}{4}$ mile each day. How many days will it take her to swim 50 miles?
11. Eric has $\frac{1}{3}$ of a watermelon to share equally with 3 friends. How much will each person get?
12. A gardener needs to pack 16 pounds of beans into 20 bags. He wants all the bags to weigh about the same. About how much will each bag weigh?

Rememberfing

Add or subtract.

1. $2 \frac{3}{4}$
2. $4 \frac{2}{3}$
3. $10 \frac{1}{2}$
$-1 \frac{5}{8}$
$+1 \frac{5}{9}$
$-3 \frac{4}{5}$
4. 7
$-2 \frac{1}{6}$
5. $3 \frac{2}{5}$
$+4 \frac{5}{6}$
6. $8 \frac{1}{3}$
$+1 \frac{3}{4}$

Complete each fraction box.

7.

$\frac{2}{5}$ and $\frac{2}{7}$	
$>$	
+	
-	
-	

8.

$\frac{5}{6}$ and $\frac{6}{7}$	
$>$	
+	
-	
-	

Predict whether the product will be greater than, less than, or equal to the second factor. Then compute the product.
9. $\frac{2}{3} \cdot 5=x$

Predict: $x \bigcirc 5$
Compute: $x=$ \qquad
10. $\frac{3}{3} \cdot 5=x$

Predict: $x \bigcirc 5$
Compute: $x=$ \qquad
11. $1 \frac{1}{6} \cdot 5=x$

Predict: $x \bigcirc 5$
Compute: $x=$ \qquad
12. Stretch Your Thinking Draw a diagram to show how many twelfths there are in 3 . Describe a situation in which you would need to know how many twelfths there are in 3.
\qquad
\qquad
\qquad

