Solve.

1. Dan's Ice Cream comes in cartons of two sizes. The large carton holds $4 \frac{1}{2}$ pounds. The small carton holds $1 \frac{3}{4}$ pounds less. How much ice cream does the small carton hold?
2. Mac picked four baskets of blueberries. The weights of the berries in pounds are given below. Order the weights from lightest to heaviest.

$\frac{5}{4}$	$\frac{9}{10}$	$\frac{4}{5}$	$\frac{13}{20}$

3. Four cones of Dan's Ice Cream hold $\frac{1}{2}$ pound. How much ice cream does each cone hold?
4. If a dish of ice cream holds $\frac{1}{4}$ pound, how many dishes can you get from a $4 \frac{1}{2}$-pound carton of Dan's Ice Cream?

Solve. Give your answer in simplest form.
5. $3 \div \frac{1}{5}=$ \qquad 6. $1 \frac{3}{4}+\frac{11}{16}=$
7. $\frac{9}{14} \cdot 2 \frac{1}{3}=$ \qquad 8. $2 \frac{3}{5} \cdot 6=$
9. $\frac{1}{3}+\frac{3}{5}=$ \qquad 10. $\frac{5}{6}+\frac{8}{9}=$
11. $\frac{1}{8} \div 4=$ \qquad 12. $\frac{2}{5}-\frac{1}{10}=$
13. $3 \frac{5}{7}-1 \frac{1}{2}=$ \qquad 14. $\frac{7}{8} \cdot \frac{2}{7}=$
\qquad
\qquad
\qquad
\qquad
\qquad

Rememberfing

Use benchmarks of $0, \frac{1}{2}$, and 1 to estimate the sum or difference. Then find the actual sum or difference.

1. $\frac{5}{10}+\frac{4}{9}$
2. $\frac{13}{14}-\frac{3}{7}$

Estimate: \qquad
Sum: \qquad
Estimate: \qquad
Difference: \qquad
3. $\frac{8}{9}-\frac{7}{8}$
4. $\frac{13}{14}+\frac{3}{4}$

Estimate: \qquad
Estimate: \qquad
Difference: \qquad Sum: \qquad
Write an equation. Then solve.
Show your work.
5. A rectangle has an area of 20 square feet and a length of 6 feet. What is its width?
6. Bailey attends gymnastics practice for 8 hours each week.

This is $\frac{1}{4}$ the number of hours that the gym is open for practice. How many hours is the gym open for practice?

Solve.
7. $\frac{1}{4} \div 3=$ \qquad 8. $\frac{1}{4} \cdot 3=$ \qquad 9. $14 \cdot \frac{1}{6}=$ \qquad
10. Stretch Your Thinking How is solving $\frac{1}{8} \div 5$ different from solving $\frac{1}{8} \cdot 5$?
\qquad
\qquad
\qquad
\qquad
\qquad

